Grade 8 Language - April 14th to 17th

Read a variety of materials every day and talk about what you are reading with a friend or family member.

<table>
<thead>
<tr>
<th>I am learning to:</th>
<th>I am learning to:</th>
<th>I am learning to:</th>
<th>I am learning to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>analyse the features of narrative text</td>
<td>organize my ideas for an intended purpose, audience and theme</td>
<td>write a children’s narrative using features and structures of the genre</td>
<td>make revisions to improve the content, clarity, and interest of my written work</td>
</tr>
</tbody>
</table>

Brainstorm ideas for your own children’s story. Jot down your ideas. This is a thinking and planning day.

Things to Consider:
- **Purpose**
 - What is the overall purpose of the story? Can you identify the theme? (i.e. courage, friendship, belonging/identity, family)
- **Audience**
 - What age audience is this written for? How do you know?
- **Character**
 - Identify and describe the main character.
 - What other characters are in the story?
- **Setting**
 - Where and when does story take place?
 - What is the mood at the beginning?
- **Plot**
 - What is the main conflict (problem) of the story?
 - What plot events happen to develop the conflict?
- **Resolution**
 - How is the conflict resolved at the end?
 - How does the resolution support the theme?

Brainstorm ideas for your own children’s story. Jot down your ideas. This is a thinking and planning day.

Things to Consider:
- **Purpose**
 - What will the theme of your story be?
 - What is the overall purpose of your story? Is it to entertain? Teach a lesson?
- **Audience**
 - For what age group will you write your story?
 - What things could you include that will appeal to your audience?
- **Character**
 - Identify and describe your main character.
 - What other characters will be in your story?
- **Setting**
 - Where and when will your story take place?
 - What is the mood at the beginning?
- **Plot**
 - What is the main conflict in your story?
 - What plot events will happen to develop the conflict?
- **Resolution**
 - How will this conflict be resolved at the end?
 - How does the resolution support your theme?

It’s time to write your First Draft.

- Take your great ideas and focus on making the story come alive!
- Don’t worry about writing a “perfect” first draft… it’s all about getting those preliminary ideas out of your head and onto the page.
- There will be time to fix your writing later during the revision and editing process.
- Don’t stress about all the details, just get the story down.
- Your goal is to finish writing your first draft so that you have something to revise and edit.

You might try...

- Consider reaching out to your teacher if you need help to choose a story or need support understanding the features of a narrative text.
- What questions do you have about your story moving forward?
 - If you need some help coming up with some ideas or a theme, reach out to your teacher for some assistance.
- Limit the distractions while you write.
 - Set a deadline or time frame for your writing.
- What pictures could you add if you were going to publish your story?
 - Consider designing a book cover that you could share to promote your story.
Grade 8 Math – April 14-17

Multiplication Number Battles: You will need a deck of cards using Ace through K where A = 1, J = 11, Q = 12 and K = 13.Deal the cards between players. The game is played by each player flipping two cards at a time. Each player multiplies their two card values and the highest number wins, taking all the cards. The goal is to collect the entire deck. Need help with your facts? Use a variety of strategies to help you such as groupings/arrays/know facts.

<table>
<thead>
<tr>
<th>Learning Goals:</th>
<th>I will be developing my multiplication skills.</th>
<th>I will be exploring numbers between zero and one numbers greater than one using a variety of models.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Whole Lot of Pieces Going On Creating, labelling and comparing fractions.</td>
<td>Numbers between zero and one represent pieces of a whole and are called fractions. I can compare and order fractions by using the information given about the size of the piece (the denominator) and the number of pieces (the numerator). For this activity you will be making a set of fraction strips. Each strip is to be folded into equal sections that represent unit fractions. You will need 6 long strips of paper that are the same length. Work carefully to fold each strip into the fractions listed: One Whole, Halves, Thirds, Fourths, Sixths, Tenths. Order your strips from the least amount of folds to the most. Using the diagram to guide you, label all of the equal spaces in each strip. Each of these spaces will be labeled as a unit fraction. Use your fraction strips and determine the greater size fraction in each pair: $rac{1}{2}$ and $rac{1}{4}$, $rac{1}{3}$ and $rac{1}{4}$, $rac{1}{4}$ and $rac{3}{4}$, $rac{2}{5}$ and $rac{4}{5}$. What is happening to the size of the pieces as the number in the denominator changes? When the denominator wasn’t different in the pair, what strategy did you use to determine which was greater?</td>
<td>Were some models easier to use with certain fractions? If so, which fractions and why? How did the numerator and denominator help you decide how to draw your model? Based on your findings, which would you rather? Explain your thinking using a model of your choice.</td>
</tr>
<tr>
<td>I Can See Clearly Now Using visual models to represent numbers between zero and one.</td>
<td>We can see the size of fractions in relation to one whole when using visual models such as a circle, number bar, or number line. There are many models that we can use to represent fractions of any size. Use the model of your choice to represent the following numbers: $\frac{2}{3}$, $\frac{1}{4}$, $\frac{3}{5}$, $\frac{7}{10}$, $\frac{1}{2}$, $\frac{1}{3}$.</td>
<td>Were some models easier to use with certain fractions? If so, which fractions and why? How did the numerator and denominator help you decide how to draw your model? Based on your findings, which would you rather? Explain your thinking using a model of your choice.</td>
</tr>
<tr>
<td>Is Bigger Always Better? Using visual models to represent numbers greater than one.</td>
<td>We can see the size of fractions in relation to one whole when using visual models such as a circle, number frame, or number line. Use the models from the previous activity to represent the following fractions. Choose only one model per fraction, but use each model at least once: $\frac{3}{10}$, $\frac{3}{10}$, $\frac{5}{10}$, $\frac{4}{10}$, $\frac{2}{3}$, $\frac{15}{10}$, $\frac{8}{10}$, $\frac{3}{5}$, $\frac{3}{6}$, $\frac{7}{6}$. What do you notice? What do you wonder? Any similarities? Based on your findings, which would you rather? Explain your thinking using a model.</td>
<td>Were some models easier to use with certain fractions? If so, which fractions and why? How did the numerator and denominator help you decide how to draw your model? Based on your findings, which would you rather? Explain your thinking using a model of your choice.</td>
</tr>
<tr>
<td>Sort It Out Sorting, representing, comparing and combining numbers.</td>
<td>We can compare or combine any numbers written in any form and with any model. Comparing Fractions: Divide the following fractions into two groups: Fractions with values between 0 and 1 and fractions that are greater than 1. $\frac{4}{5}$, $\frac{2}{5}$, $\frac{5}{3}$, $\frac{2}{3}$, $\frac{6}{5}$, $\frac{5}{2}$, $\frac{8}{3}$, $\frac{9}{10}$, $\frac{7}{8}$, $\frac{2}{5}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{2}{5}$, $\frac{10}{4}$, $\frac{3}{3}$, $\frac{4}{4}$. Were there any fractions that didn’t fit into either category? What were they? Sort the amounts greater than one into two sections, mixed numbers and improper fractions. Can you find any mixed number and improper fractions are equal to each other? Create a number line and place these values on it. Combining Fractions: Below is a list of a variety of fractions (unit, proper, improper) and mixed numbers. $\frac{1}{4}$, $\frac{5}{4}$, $\frac{3}{4}$, $\frac{3}{4}$, $\frac{2}{4}$, $\frac{2}{4}$. What would the total be if you added all of the numbers together? Use a model to show your thinking.</td>
<td>Were some models easier to use with certain fractions? If so, which fractions and why? How did the numerator and denominator help you decide how to draw your model? Based on your findings, which would you rather? Explain your thinking using a model of your choice.</td>
</tr>
</tbody>
</table>

Weekly NS&N: Playing Multiplication Number Battles can be a fun way to develop your number facts. Which number facts did you recall easiest and which required more thinking? Extend: Try using more decks of cards and just the numbers that are challenging! Name three models that you can use to represent fractions. How do these help when working with fractions? Do some models work better for certain fractions? Explain. Four different types of fractions were used in this work. Can you name all four? When combining numbers, which model did you prefer to use? Why?

Looking for more? Try this... Find a family member to play this game. Each player takes a turn rolling two dice. Use one die for the numerator and one for the denominator. On your first turn, roll the dice and record your fraction. Roll the dice again to create another proper fraction. Combine this fraction with the one you made in the first roll. Continue taking turns to see who can get to 20!

The Ministry of Education has also developed an online portal, which is available at [Ontario.ca/learn-at-home](https://www.ontario.ca/learn-at-home) and enables students at every grade level to continue learning while away from school. These resources are developed by Ontario educators, and resources for all grades are informed by leading instructional guidance.